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The hypothesis of this project is that the linear combination of musical parameters significantly predicts the 
target variable of the composer. 

I.​ Literature Review 
Automatically identifying a composer from a musical piece is a central challenge in Music Information 
Retrieval (MIR). Our project engages with this problem by adopting a “global feature” approach, as 
supported by Herremans, Martens, and Sörensen (2016). In their study, they were able to classify pieces by 
Bach, Haydn, and Beethoven through 12 statistical features from symbolic music data, which validates our 
method of creating a musical “fingerprint” from MIDI segments and modeling the target variable as a linear 
combination of these features.  While other studies have shown success with sequential “local feature” models 
like n-grams, the global approach is specifically chosen for its interpretability. As the MIR literature 
emphasizes, “strategies based on hand-crafted mid-level features are still of relevance” precisely because they 
"allow interpretable and controllable systems" that reveal why a classification was made, a goal often obscured 
in complex “black box” models (Chowdhury et al., 2022).  

Building on this foundation, our feature set includes sophisticated metrics, such as ioi_entropy (inter-onset 
interval entropy), to capture rhythmic complexity by quantifying the uncertainty in the discrete probability 
distribution of note intervals. This concept is well-supported by studies like Febres & Jaffe (2017), who 
propose viewing music through its “entropy content” and “symbolic diversity” as a powerful method for 
“music style recognition,” and by research such as Gündüz (2023), which explores how entropy is inherently 
linked to musical order, complexity, and even perceived instability in melodies. For our classification model, 
we adopted a one-vs-one (OVO) strategy, decomposing the multi-composer problem into a series of binary 
classifiers to adapt the standard binary regression framework for a multiclass response. This approach is a 
standard and highly effective technique for multiclass classification, a conclusion supported by foundational 
comparative studies in the field (Hsu & Lin, 2002). By grounding our work in established methods (global 
features, entropy, and OVO classification), our project provides a robust analysis that quantifies the stylistic 
“fingerprints” of different composers. 

II.​ Dataset 
For our dataset, we used drengskauper’s Hugging Face MIDI files on various classical music pieces 
(Drengskapur 2022). For analysis, 10 parameters were used: mean pitch, pitch standard deviation, pitch range, 
note density, mean inter-onset interval, inter-onset standard deviation, inter-onset entropy, mean note 
duration, mean velocity, and velocity standard deviation. These parameters are standards in evaluating music 
but for inter-onset entropy (IOI entropy) ideas of Shannon’s entropy were used, which dictates rhythmic 
complexity in a piece: higher entropy is reflected in more diverse IOI distribution (Gündüz et. al 2023). Then 
using these parameters, they were used to distinguish 3 composers: Albeniz, Bach, and Alkan. These 
composers were chosen because they had the most amount of data/pieces available for analysis.  
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To increase our dataset size, we split each piece into segments of 30 seconds. This roughly quadrupled our 
dataset to 385 datapoints. With the 10 features mentioned above, our input data has a shape of (385,10). Our 
labels consisted of tuples with the format of (composer, piece name).  

 

III.​ Methodology 
Our analysis includes four modeling components: (1) a least-squares linear regression used as a binary 
classifier in a one-vs-one setup, where continuous outputs are converted to class labels using an optimized 
threshold; (2) a feature ablation study using the same linear model in a one-vs-rest setup to evaluate the 
contribution of each musical parameter; (3) a logistic regression classifier, included to compare the 
linear-probability model with a more appropriate method for binary outcomes. This sequence allows us both 
to meet the course’s emphasis on linear modeling and to evaluate composer prediction with a more suitable 
probabilistic classifier; and finally, (4) classical linear regression analyses required by the course, including 
multiple-predictor regression, residual diagnostics, ridge regression, and bias–variance evaluation. 

1. Least-Squares Regression 
Our first experiment was a simple OVO classification between each pair of composers from the set of 
Albeniz, Bach, and Alkan. This was built via a least squares linear regression model with binary labels for 
either composer. Features were standardized to zero mean and unit variance before training. The model finds 
the optimal parameter weightings that minimize the squared error between the linear combination of features 
and the binary labels. However, since least squares produce continuous output values rather than binary 
predictions, we need to find a threshold such that if the output value exceeds that threshold, the classification 
is the second composer, and if it falls below, the classification is the first composer. We select the threshold 
that maximizes balanced accuracy on the training set, and we evaluate performance using balanced accuracy 
to account for class imbalance. The results are depicted in Figure 2. Interestingly, OVO classifications 
including Bach all exceed 0.9 accuracy yet Alkan vs. Albeniz only yields a 0.682 accuracy.  

2. Feature Ablation 
The second experiment tests ablations on each of the ten features, still utilizing the least squares linear 
regression model from above. However, instead of an OVO, we run an One versus Rest (OVR) classification 
for a balanced accuracy assessment on the top three composers (Albeniz, Bach, and Alkan). For each 
composer, we first establish a baseline accuracy using all features, then remove each feature individually and 
compare the resulting accuracy against this baseline. Features were standardized to zero mean and unit 
variance before training, consistent with the first experiment. In Figure 4, we see the results for each of the 
composers. Interestingly, some features, when removed, would increase the accuracy for some composers. On 
Figure 3, these are the variables with the most negative values in the ablation test such as inter-onset entropy 
and mean velocity. 

3. Logistic Regression 
For our third experiment, we repeated the OVO classification between each pair of composers (Albeniz, 
Bach, and Alkan) using logistic regression instead of least squares. Features were standardized to zero mean 
and unit variance before training, consistent with the previous experiments. Unlike least squares, logistic 
regression models the probability of class membership directly through the logistic function, which naturally 



constrains outputs to the range [0,1]. This eliminates the need for threshold optimization, as the decision 
boundary is fixed at 0.5 probability. The model finds optimal parameter weightings that maximize the 
likelihood of the observed binary labels. We evaluate performance using balanced accuracy to account for 
class imbalance. The results are depicted in Figure 10. The accuracy values are nearly identical to those from 
the least squares approach, with Albeniz vs Bach at 0.943, Bach vs Alkan at 0.977, and Albeniz vs Alkan at 
0.688. This similarity is expected, as both methods are linear classifiers that differ primarily in their 
optimization objectives and output interpretation. 

4. Classical Linear Regression with Multiple Predictors and Residuals 

In addition to our classifier-based experiments, we also apply the classical linear regression tools required by 
the course. Unlike the previous sections, the goal here is not to build a composer classifier but to use our 
dataset to illustrate multiple-predictor regression, residual diagnostics, ridge regression, and the bias–variance 
tradeoff. 

Through the regression_analysis.py script, a multiple-predictor linear regression was fitted using all 10 
features at once, where Y = B0 + B1X1 + … + B10X10 + e, with Y as a binary composer label and the Xi as 
the musical features. Compared to single-predictor regressions, the multiple-predictor model controls for 
correlations among features. For example, pitch standard deviation and pitch range are correlated, and a 
simple regression can show that part of the change in pitch standard deviation can be explained by the change 
in pitch range. The multiple-predictor model separates these contributions so each Bi reflects the effect of its 
feature with all these other parameters controlled for.  

Figure 7 shows the residual plot comparing y-hat to (y – y-hat). Because Y is binary, the residuals fall on two 
diagonal lines: when Y = 1, the residual is 1 – y-hat; when Y = 0, it is –y-hat. These lines come from algebra, 
not model behavior, and they make the residual plot uninformative for diagnosing issues like curvature or 
heteroskedasticity. This limitation is one reason logistic regression is usually preferred for binary outcomes. 

5. Ridge Regression and Bias-Variance 

Beyond the multiple-predictor fit, we also study model complexity using ridge regression and the 
bias–variance tradeoff to understand how regularization affects performance. Figure 8 shows the ridge 
regression analysis. The left plot shows train and test R^2 as a function of the regularization parameter λ. The 
optimal λ is around 100, where test R^2 is highest. As expected, train R^2 is slightly higher than test R^2; 
reversing this pattern would indicate over-regularization or noise. The right plot shows coefficient shrinkage: 
as λ increases, the coefficients move toward zero, producing a simpler model. 

Figure 9 illustrates the bias–variance tradeoff. As model complexity increases, training error decreases (lower 
bias), while test error eventually increases for a number of parameters exceeding our current 10 (higher 
variance). Since MSE = Variance + Bias^2, the test MSE begins forming the expected U-shaped curve. Even 
though Y is binary-coded, these diagnostics remain valid because they evaluate the continuous fitted 
predictions y-hat, which are later thresholded for classification. 

 



IV.​ Closing Thoughts 
While linear regression was used in several forms to connect with class concepts (multiple predictors, 
residuals, ridge regression, and bias–variance), we also implemented logistic regression as the more 
appropriate model for binary composer prediction. This gives us a clean comparison: the linear probability 
model is helpful pedagogically, but logistic regression is better aligned with the underlying statistics of a 0/1 
outcome. The similar performance between the two approaches suggests that the main structure in our 
feature space is largely linearly separable, and that simple linear classifiers capture most of the signal in 
distinguishing these composers. This project proves our hypothesis that it is possible to use regression to 
classify classical music composers from different components of their music. However, many open questions 
remain for discovery. For example, this study used global, hand-crafted musical features found in literature 
like entropy or variance but a question that could be explored is: What efficacy does different types of musical 
analyses have on identifying composers? Also, this study used 30 second intervals but we could explore 
further how segment length affects the results. Finally, expanding from the mathematical models of the class, 
how does polynomial regression (or other types of non linear regression) increase or decrease the accuracy of 
the prediction model?  
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