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The hypothesis of this project is that the linear combination of musical parameters significantly predicts the
target variable of the composer.

I. Literature Review

Automatically identifying a composer from a musical piece is a central challenge in Music Information
Retrieval (MIR). Our project engages with this problem by adopting a “global feature” approach, as
supported by Herremans, Martens, and Sérensen (2016). In their study, they were able to classify pieces by
Bach, Haydn, and Beethoven through 12 statistical features from symbolic music data, which validates our
method of creating a musical “fingerprint” from MIDI segments and modeling the target variable as a linear
combination of these features. While other studies have shown success with sequential “local feature” models
like n-grams, the global approach is specifically chosen for its interpretability. As the MIR literature
emphasizes, “strategies based on hand-crafted mid-level features are still of relevance” precisely because they
"allow interpretable and controllable systems" that reveal why a classification was made, a goal often obscured
in complex “black box” models (Chowdhury et al., 2022).

Building on this foundation, our feature set includes sophisticated metrics, such as z7_entropy (inter-onset
interval entropy), to capture rhythmic complexity by quantifying the uncertainty in the discrete probability
distribution of note intervals. This concept is well-supported by studies like Febres & Jaffe (2017), who
propose viewing music through its “entropy content” and “symbolic diversity” as a powerful method for
“music style recognition,” and by research such as Giindiiz (2023), which explores how entropy is inherently
linked to musical order, complexity, and even perceived instability in melodies. For our classification model,
we adopted a one-vs-one (OVO) strategy, decomposing the multi-composer problem into a series of binary
classifiers to adapt the standard binary regression framework for a multiclass response. This approach is a
standard and highly effective technique for multiclass classification, a conclusion supported by foundational
comparative studies in the field (Hsu & Lin, 2002). By grounding our work in established methods (global
features, entropy, and OVO classification), our project provides a robust analysis that quantifies the stylistic
“fingerprints” of different composers.

II. Dataset

For our dataset, we used drengskauper’s Hugging Face MIDI files on various classical music pieces
(Drengskapur 2022). For analysis, 10 parameters were used: mean pitch, pitch standard deviation, pitch range,
note density, mean inter-onset interval, inter-onset standard deviation, inter-onset entropy, mean note
duration, mean velocity, and velocity standard deviation. These parameters are standards in evaluating music
but for inter-onset entropy (101 entropy) ideas of Shannon’s entropy were used, which dictates rhythmic
complexity in a piece: higher entropy is reflected in more diverse 101 distribution (Glindiiz et. al 2023). Then
using these parameters, they were used to distinguish 3 composers: Albeniz, Bach, and Alkan. These
composers were chosen because they had the most amount of data/pieces available for analysis.
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To increase our dataset size, we split each piece into segments of 30 seconds. This roughly quadrupled our
dataset to 385 datapoints. With the 10 features mentioned above, our input data has a shape of (385,10). Our
labels consisted of tuples with the format of (composer, piece name).

III. Methodology

Our analysis includes four modeling components: (1) a least-squates linear regression used as a binary
classifier in a one-vs-one setup, where continuous outputs are converted to class labels using an optimized
threshold; (2) a feature ablation study using the same linear model in a one-vs-rest setup to evaluate the
contribution of each musical parameter; (3) a logistic regression classifier, included to compare the
linear-probability model with a more appropriate method for binary outcomes. This sequence allows us both
to meet the course’s emphasis on linear modeling and to evaluate composer prediction with a more suitable
probabilistic classifier; and finally, (4) classical linear regression analyses required by the course, including

multiple-predictor regression, residual diagnostics, ridge regression, and bias—vatiance evaluation.

1. Least-Squares Regression

Our first experiment was a simple OVO classification between each pair of composers from the set of
Albeniz, Bach, and Alkan. This was built via a least squares linear regression model with binary labels for
either composer. Features were standardized to zero mean and unit variance before training, The model finds
the optimal parameter weightings that minimize the squared error between the linear combination of features
and the binary labels. However, since least squares produce continuous output values rather than binary
predictions, we need to find a threshold such that if the output value exceeds that threshold, the classification
is the second composer, and if it falls below, the classification is the first composer. We select the threshold
that maximizes balanced accuracy on the training set, and we evaluate performance using balanced accuracy
to account for class imbalance. The results are depicted in Figure 2. Interestingly, OVO classifications
including Bach all exceed 0.9 accuracy yet Alkan vs. Albeniz only yields a 0.682 accuracy.

2. Feature Ablation

The second experiment tests ablations on each of the ten features, still utilizing the least squares linear
regression model from above. However, instead of an OVO, we run an One versus Rest (OVR) classification
for a balanced accuracy assessment on the top three composers (Albeniz, Bach, and Alkan). For each
composer, we first establish a baseline accuracy using all features, then remove each feature individually and
compare the resulting accuracy against this baseline. Features were standardized to zero mean and unit
variance before training, consistent with the first experiment. In Figure 4, we see the results for each of the
composers. Interestingly, some features, when removed, would increase the accuracy for some composers. On
Figure 3, these are the variables with the most negative values in the ablation test such as inter-onset entropy

and mean velocity.

3. Logistic Regression

For our third experiment, we repeated the OVO classification between each pair of composers (Albeniz,
Bach, and Alkan) using logistic regression instead of least squares. Features were standardized to zero mean
and unit variance before training, consistent with the previous experiments. Unlike least squares, logistic
regression models the probability of class membership directly through the logistic function, which naturally



constrains outputs to the range [0,1]. This eliminates the need for threshold optimization, as the decision
boundary is fixed at 0.5 probability. The model finds optimal parameter weightings that maximize the
likelihood of the observed binary labels. We evaluate performance using balanced accuracy to account for
class imbalance. The results are depicted in Figure 10. The accuracy values are neatly identical to those from
the least squares approach, with Albeniz vs Bach at 0.943, Bach vs Alkan at 0.977, and Albeniz vs Alkan at
0.688. This similarity is expected, as both methods are linear classifiers that differ primarily in their
optimization objectives and output interpretation.

4. Classical Linear Regression with Multiple Predictors and Residuals

In addition to our classifier-based experiments, we also apply the classical linear regression tools required by
the course. Unlike the previous sections, the goal here is not to build a composer classifier but to use our
dataset to illustrate multiple-predictor regression, residual diagnostics, ridge regression, and the bias—variance

tradeoff.

Through the regression_analysis.py script, a multiple-predictor linear regression was fitted using all 10
features at once, where Y = BO + B1X1 + ... + B10X10 + ¢, with Y as a binary composer label and the Xi as
the musical features. Compared to single-predictor regressions, the multiple-predictor model controls for
correlations among features. For example, pitch standard deviation and pitch range are correlated, and a
simple regression can show that part of the change in pitch standard deviation can be explained by the change
in pitch range. The multiple-predictor model separates these contributions so each Bi reflects the effect of its

feature with all these other parameters controlled for.

Figure 7 shows the residual plot comparing y-hat to (y — y-hat). Because Y is binary, the residuals fall on two
diagonal lines: when Y = 1, the residual is 1 — y-hat; when Y = 0, it is —y-hat. These lines come from algebra,
not model behavior, and they make the residual plot uninformative for diagnosing issues like curvature or
heteroskedasticity. This limitation is one reason logistic regression is usually preferred for binary outcomes.

5. Ridge Regression and Bias-Variance

Beyond the multiple-predictor fit, we also study model complexity using ridge regression and the
bias—variance tradeoff to understand how regularization affects performance. Figure 8 shows the ridge
regression analysis. The left plot shows train and test R*2 as a function of the regularization parameter A. The
optimal X is around 100, where test R"2 is highest. As expected, train R*2 is slightly higher than test R"2;
reversing this pattern would indicate over-regularization or noise. The right plot shows coefficient shrinkage:

as A increases, the coefficients move toward zero, producing a simpler model.

Figure 9 illustrates the bias—variance tradeoff. As model complexity increases, training error decreases (lower
bias), while test error eventually increases for a number of parameters exceeding our current 10 (higher
variance). Since MSE = Variance + Bias”2, the test MSE begins forming the expected U-shaped curve. Even
though Y is binary-coded, these diagnostics remain valid because they evaluate the continuous fitted
predictions y-hat, which are later thresholded for classification.



IV. Closing Thoughts

While linear regression was used in several forms to connect with class concepts (multiple predictors,
residuals, ridge regression, and bias—variance), we also implemented logistic regression as the more
appropriate model for binary composer prediction. This gives us a clean comparison: the linear probability
model is helpful pedagogically, but logistic regtession is better aligned with the underlying statistics of a 0/1
outcome. The similar performance between the two approaches suggests that the main structure in our
feature space is largely linearly separable, and that simple linear classifiers capture most of the signal in
distinguishing these composers. This project proves our hypothesis that it is possible to use regression to
classify classical music composers from different components of their music. However, many open questions
remain for discovery. For example, this study used global, hand-crafted musical features found in literature
like entropy or variance but a question that could be explored is: What efficacy does different types of musical
analyses have on identifying composers? Also, this study used 30 second intervals but we could explore
further how segment length affects the results. Finally, expanding from the mathematical models of the class,
how does polynomial regression (or other types of non linear regression) increase or decrease the accuracy of
the prediction model?



V. Figures

Figure 1:
Binary Classification Balanced Accuracy Matrix
(Normalized for Class Imbalance)
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Figure 2:

Correlation Matrix of Features
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Figure 3:

Feature Importance via Ablation (Balanced Accuracy)
(Positive = Important, Negative = Harmful, Normalized for Class Imbalance)
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Figure 4:

albeniz vs alkan
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Figure 5:

albeniz vs bach

Test Balanced Accuracy: 0.9412 (94.12%)
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Figure 6:

Residuals (y - §)
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Figure 8:

Ridge Regression: R? vs Regularization

Ridge Regression: Coefficient Shrinkage
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Bias-Variance Tradeoff: Training vs Test Error
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Figure 10:

Logistic Regression: Binary Classification Balanced Accuracy
(Normalized for Class Imbalance)

albeniz

bach

Composer 1 (True)

alkan -

albeniz bach alkan
Composer 2 (Predicted)

1.0

- 0.8

- 0.7

Aoeundoy paduejeg



VI.

Sources

Chowdhury, A., et al. (2022). How Do You See Me? A Framework for "Musicologist-Friendly"
Explanations. Proceedings of the 23rd International Society for Music Information Retrieval Conference (ISMIK).
Drengskapur. (2022). MIDI Classical Music Dataset. Hugging Face. Retrieved from
https://huggingface.co/datasets/drengskapur/midi-classical-music

Febres, G., & Jaffe, K. (2017). Music viewed by its entropy content: A novel window for comparative
analysis. PLoS ONE 72(10): e0185757. https://doi.org/10.1371 /journal.pone.0185757

Gundiz, Gungér. (2023). "Entropy, energy, and instability in music". Physica A: Statistical Mechanics and
its Applications, vol. 609, 128365. https://doi.org/10.1016/j.physa.2022.128365.

Herremans, D., Martens, D., & Sérensen, K. (2016). "Composer Classification Models for
Music-Theory Building." In D. Meredith (Ed.), Computational Music Analysis (pp. 369-392). Springer.
Hsu, C. W, & Lin, C. J. (2002). A comparison of methods for multiclass support vector machines.
IEEE Transactions on Neural Networks, 13(2), 415-425.



https://huggingface.co/datasets/drengskapur/midi-classical-music
https://huggingface.co/datasets/drengskapur/midi-classical-music
https://doi.org/10.1371/journal.pone.0185757
https://doi.org/10.1016/j.physa.2022.128365

	Classical Music Predictor 
	I.​Literature Review 
	II.​Dataset 
	III.​Methodology 
	1. Least-Squares Regression 
	2. Feature Ablation 
	3. Logistic Regression 
	4. Classical Linear Regression with Multiple Predictors and Residuals 
	5. Ridge Regression and Bias-Variance 

	IV.​Closing Thoughts 
	 
	V.​Figures 
	Figure 1:  
	Figure 2:  
	 
	 
	 
	 
	 
	 
	 
	 
	Figure 3:  
	 
	 
	Figure 4:  
	 
	Figure 5:  
	 
	Figure 6:  
	 
	Figure 7:  
	 
	 
	Figure 8:  
	 
	 
	Figure 9: 
	 
	 
	 
	 
	Figure 10: 

	 
	 
	VI.​Sources 


