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Abstract

This study investigates how chemistry distributions affect team resilience to injury in the NBA.
We crafted a metric, Impact Per Minute (IPM), capturing positive and negative contributions in
player pairings for each NBA team, and quantified team “spikiness” with the coefficient of
variance. We hypothesized that teams with uniformly distributed IPM networks would face a
smaller IPM-penalty after shocks (injuries) than spiky networks. However, we found no
significant difference (p = 0.73). Instead, we found an extreme difference in the volatility of
injury’s impact (¢ = 6.92 vs 6 = 21.35, p < 0.0001). These findings have practical applications
for front office decisions in the NBA. A playoff quality team may benefit most from evening out
its roster, acquiring or trading for players that will increase redundancy between IPM
connections. On the other end of the spectrum, a rebuilding team with a longshot at making the
playoffs may benefit from acquiring a star, as their low upside makes it necessary to embrace
risk for any chance of success.

1.Introduction

Team Chemistry is a concept often discussed in sports but it's rarely quantified with
empirical rigor. It's an elusive quality, intuitively understood as the synergy between players that
goes beyond their individual performances. This analysis will move beyond anecdotal evidence
to quantitatively measure team chemistry and its effect on performance, in particular when a
team faces adversity like a significant player injury.

In the context of the NBA, where the contributions of star players are immense and
player rotations are constant, a team's structure is always put to a test. While built-in breaks
throughout a 48-minute game for key players function as predictable, micro-level disruptions to a
team’s momentary flow (though often beneficial), a major, prolonged injury represents a much
larger, unforeseen shock to the team system.

This project explores how the underlying structure of a team's chemistry network
influences its ability to withstand such shocks. We ask: Do teams that rely on a few elite player
pairings suffer more from an injury than teams where performance is more evenly distributed
across the roster? To answer this, we developed a network-based approach to model team
chemistry and analyze its performance under stress.

2.Literature review

2.1 Mukherjee et al. (2018)

One attempt at quantifying the impact of chemistry can be seen in Mukherjee et al. (2018). They
used a naive measure of chemistry — simply, the amount of past wins players have had together.
They did this for the NBA, MLB, EPL, IPL, and even Dota 2 (a video game). In baseball, for



example, they controlled for estimated talent (using an average of hitter and pitcher stats from
the prior 10 years) as well as team fixed effects, and found that teams with higher team chemistry
tended to score more than expected to a statistically significant degree (P <.001). Including
chemistry instead of just team skill increased the model’s predictive power: the R*2 for
predicting run differential in individual games increased from 6.4 to 10.5%. Fascinatingly, after
accounting for team chemistry, the team skill estimators (past WAR / OPS) did not influence the
score in a statistically significant manner. This brings up potential errors with the interpretation
of the study, particularly its chemistry metric. It is quite possible that the chemistry metric is
capturing something different than is intended — maybe, players with shared high win totals who
are still on the same team have done so due to long-term expensive contracts, implying that they
project better than a simple averaging of past WAR / OPS might indicate. The study could’ve
accounted for this by using player projections to more accurately estimate team strength. If
chemistry was shown to have a predictive effect using forward-looking projections instead of
backwards-looking performance, there would be a more convincing argument for it as a
legitimate effect. Still, the fact that the study found a statistically significant chemistry effect
across such different forms of competition — MLB, NBA, EPL, IPL and Dota 2 (p values all
much less than 0.05) — provides compelling, if not definitive, evidence for its existence. It is
unlikely that the methodological flaws would happen to produce statistically significant positive
results across all of the diverse domains measured.

2.2 Pradeep (2024)

Pradeep (2024) focused exclusively on basketball and employed a more sophisticated and
basketball-specific definition of chemistry. The study used roster continuity, the standard
deviation of salaries and minutes played, and various in-game statistics such as passes to
construct its chemistry metric. While the study found team chemistry to have a statistically
significant effect on winning percentage (p-value of 0.0302), it did not find it to be of any
real-world significance. The model that used chemistry to predict winning percentage had an
R"2 of 0.019, meaning chemistry had very little impact on team success. Taken at face value, this
study suggests that chemistry is irrelevant when considering roster construction. However, this
study’s use of chemistry as the sole predictor of winning percentage obfuscates the genuine
impact it may have. Chemistry could correlate with good or bad overall skill, different playstyles,
coaching strategies — or any number of other factors. These other factors could be influencing
winning percentage in ways not considered by this regression, and as such, it only establishes a
correlation. The true causal impact of chemistry on winning percentage could be lower or higher
than presented here.

2.3 Fewell et al. (2012)

These two studies show two different ways of looking at chemistry, both in its definition and in
its impact. They demonstrate a larger theme of its murkiness — intuitively it can be understood as
the ability of players to work well together, to synergize, but it is harder to pin down as an exact
concept. A more grounded way to look at chemistry could be through structural stability. This



means chemistry is less focused on how well players work together on the court or on the field,
but instead looks at the balance of the roster, and questions how durable it is as a unit. This may
seem counterintuitive at first. Chemistry is often imagined as the combination of irreplaceable
players who just click together — but this makes a roster less versatile. Fewell et al. (2012) helps
frame this idea. The study modeled NBA offenses as passing graphs and found that more evenly
distributed flow centrality correlated to higher playoff success in the 2010 postseason. While not
fully causal, this supports the idea that evenly distributed ball movement structures are
beneficial.

3. Hypothesis and Constructed Variable

A chemistry network that is evenly distributed should, in principle, possess greater
resilience to the adverse effects of random shocks like player injuries. If each player pairing
offers a similar level of on-court performance, the loss of one pairing can be more easily
absorbed by others that provide comparable value. Therefore, our main hypothesis is that teams
with more uniformly distributed two-player IPM networks will experience less performance
volatility following a significant injury than teams with "spiky" (uneven) IPM distributions.

To test this, we attempted to capture on-court chemistry using our Impact Per Minute
(IPM) metric, a composite statistic designed to capture the net effect of a player duo. The
formula is:
PTS + FGM + FF'TM — FGA — F'TA + DREB + % -OREB + AST + STL + % -BLK — PF -TO

MIN

This formula aggregates positive contributions (scoring, playmaking, defense), penalizes
inefficiency and mistakes, and normalizes the result by minutes played to allow for fair
comparison across lineups. While stats like points can be generated individually, [PM
emphasizes synergy through metrics like assists, which are inherently collaborative. However,
we acknowledge its limitations; as a box-score-derived metric, [IPM cannot capture critical
off-ball actions like defensive rotations, setting screens, or a player's leadership, which are all
real components of true chemistry. Despite this, IPM provides a fairly robust, pairwise, and
minute-weighted assessment of a pairing's tangible effectiveness on the court.

IPM,; =

4. Data Collection and Network Construction

4.1 Data Sources

The data for this study was retrieved from publicly available NBA statistics for the
2024-2025 regular season. A web scraper was developed using the Python Selenium library to
systematically gather two-man lineup data for all 30 NBA teams. For each team, this process
produced a distinct CSV file containing the average performance statistics and minutes played
for every player pairing that shared time on the court.

4.2 Network Creation



To investigate the structure of each team’s chemistry, we first translated their on-court
data into a formal network model. For each team, we constructed a weighted, undirected network
where individual players are the nodes. An edge was created between any two players who
shared minutes on the court, and the edge weight was set to their corresponding Impact Per
Minute (IPM) score, to quantify the dyad's performance.

4.3 Cleaning and Backboning

The raw network data contains noise; not all pairings are strategically significant, as some
players share limited minutes, which can lead to unreliable IPM scores and edges. To isolate the
most meaningful connections, we performed a network backboning procedure. We used the
disparity filter, a thresholding method ideal for weighted networks. Unlike a global filter that
might eliminate all but the very strongest ties, the disparity filter evaluates the significance of
each edge within the local context of its connected nodes. This approach preserves connections
that are vital to a specific player, even if they aren't globally dominant. By setting an appropriate
significance level, we pruned statistically insignificant pairings, resulting in a "backbone" of
each team's core chemistry structure.

4.4 Network Structure Categorization

With the backboned networks, we categorized their overall structure using the Coefficient
of Variation (CV). The CV, which is the ratio of the standard deviation of edge weights to the
mean, serves as our normalized measure of "spikiness". A low CV indicates a "uniform" team
with balanced chemistry, while a high CV points to a "spiky" team heavily reliant on a few elite
pairings. We also calculated the Gini coefficient for each network, which confirmed the
structural classifications derived from the CV, increasing our confidence in our methods

Uniform

Clippers 2-Man Chemistry Network
Node size = average IPM with partners

Houston's 2-Man Chemistry Network
Noda size = average IPM with partners

Top-10 average IFW




5. What the Results Can Inform

This analysis is useful beyond its novelty, and could be used to help teams with their risk
profiles. Risk and volatility are important aspects of roster building that can be overlooked by
traditional value metrics. We separate this into two categories, identification and application.

5.1 Identification

This network analysis provides a practical framework for NBA front offices to diagnose roster
instability. By modeling team chemistry as a network, it allows teams to quantify their structural
volatility, or "spikiness", and identify high-risk dependencies. This diagnostic approach can
pinpoint specific vulnerabilities, such as an over-reliance on a few elite, high-IPM pairings (a
"star-based hole") or weaknesses tied to a crucial "bridge" player who connects different team
units.

5.2 Application

Once a team's structural profile is identified, front offices can tailor their strategy to their specific
competitive situation. For a contending team aiming to maximize stability, the insights suggest
they should mitigate risk by building a more "uniform" roster, targeting players who distribute
chemistry evenly to ensure the team is resilient to injuries. Conversely, a different strategy is
appropriate for rebuilding teams. For a team with low expectations, the high-risk, high-reward
volatility of a "spiky," star-centric model is a logical path forward. The potential for a superstar
to elevate the team's fortunes outweighs the risk of an inconsistent performance, as a uniformly
average roster is unlikely to break through to the next level. This approach allows front offices to
tailor their roster construction and risk profile to their specific competitive situation, moving
beyond simply acquiring talent to building a more strategically sound team.

6. Modeling Adversity with Structural Holes

Injuries in the NBA, especially those that last multiple weeks, require a restructuring of the
network as you are temporarily removing a node. As a result, the effect of that removal will
enable you to characterize the role of the node and the role of its position. This structural hole
analysis will lead to different outcomes depending on what node is removed. We posit the
removal of a high impact player who largely contributes to wins on a team that has uneven
chemistry distributions would be considered a star based hole.



Spiky Chemistry Network — Star Node Marked for Removal

We also identify the presence of a structural hole that occurs when removing a 6th or 7th
teammate who has the most crossover playtime with both starting and bench players. We say the
removal of this type of player is classified as a bridge based structural hole as their removal cuts
the graph into two separate subgraphs.

Bridge-Based Structural Hole — Linking Starters and Bench

The star-based structural hole is more relevant when looking at injuries, as meaningful chemistry
analysis would result in making claims against wins and losses. This correlates better with
star-based holes as the player removed contributed to the team’s game outcome.

7. The Gap Between Ideal and Actual Chemistry Measures

In a theoretically perfect network of team chemistry, betweenness centrality would be the
most powerful tool for identifying structural holes. It quantifies how often a player lies on the
shortest path between two others, making it ideal for detecting bridge-like roles — players who
facilitate flow between otherwise disconnected subgroups (e.g., starters and bench units). If a
team’s chemistry score fully captured all meaningful aspects of performance — on-ball actions,
off-ball movement, spatial pressure, communication, leadership, and tactical awareness — then
players with high betweenness would accurately represent those holding the team together
structurally and functionally.



However, in our dataset, chemistry is proxied by Impact per Minute (IPM), a metric built
from box-score statistics accrued during shared floor time. While IPM captures co-scoring,
rebounding, and playmaking events, it does not reflect intangible or unrecorded behaviors such
as setting effective screens, pulling defenders away from the ball, or organizing team defense.
Additionally, the co-scoring metrics aren’t reflective of team-based plays as they are the sum of
the metrics scored during shared court time and not necessarily due to teamwork. This creates a
disconnect: edges in the graph are defined by visible statistical co-performance, not necessarily
by the nuanced, often invisible dynamics that make certain players central to team cohesion.

As aresult, when betweenness centrality is calculated using IPM as the edge weight, it
tends to highlight players who log minutes across many lineup combinations, rather than those
who strategically bridge structural gaps in chemistry. For example, backup guards or hybrid
forwards may have high betweenness scores not because they orchestrate connectivity, but
simply because they rotate in frequently. This weakens the signal that betweenness centrality was
designed to capture.

We therefore conclude that while betweenness is conceptually ideal for identifying
structural vulnerabilities, in practice it can only fulfill this role when the underlying chemistry
measure is rich enough to reflect the true structural contributions of each player. Our current
findings show how structural insights must be interpreted in light of measurement limitations —
and how theoretical models sometimes outpace available data.

8. Data Analysis (Team-Level)

To ground our study in tangible examples, we conducted a case study analysis. First, we
ranked all 30 NBA teams according to their "spikiness" using the Coefficient of Variation (CV)
of their IPM networks. From this ranking, we selected two of the most "spiky" teams (the Los
Angeles Clippers and Charlotte Hornets) and two of the most "uniform" teams (the Minnesota
Timberwolves and Houston Rockets). For each of these teams, we identified a period of 3-4
weeks or more during the regular season where a player with a high average IPM sustained an
injury.

We then collected two sets of lineup data: one from the stretch of games immediately
before the injury, and another from the games during the player's absence. While generating new
network graphs for each period was useful, the visual differences were difficult to interpret
directly. To provide a clearer picture of the network's change, we calculated the percentage
change in IPM for every player pairing from the "before" to the "during" period. We then
visualized these results in the heatmaps below, where the color and intensity of each cell
represent the magnitude and direction of the change in a duo's chemistry.
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1. Clippers

Following the injury, the Clippers'
network showed a widespread,
systemic decline in performance.
Most remaining player duos
experienced a significant drop in
IPM, with changes frequently in the
-12% to -22% range. This pattern
suggests the "spiky" structure
where chemistry was highly
concentrated around the injured
star. Once that central node was
removed, the remaining
connections weakened and the
overall structure collapsed, as no
other players were able to
compensate for the loss. A few
minor improvements likely
stemmed from players being freed
from that presence.

2. Hornets

The Hornets displayed a much
more volatile and unpredictable
response to losing a key player. The
heatmap reveals a chaotic mix of
outcomes: some pairings saw their
performance drop sharply, while
others experienced dramatic gains,
with some improving by as much
as 53%. This result is also implying
a spiky structure, but one that is
less fragile and more adaptable
than the Clippers'. It suggests that
while the team was still reliant on
its star, his absence created
opportunities for new, high-impact
connections to form among the
remaining players.



Uniform Teams:

% change in IPM (after vs before)
NA = pair missing (or filtered) in one period

100

75

I 50

F25

k=25

A, Edwards < 1% ~10% Fa %
D. Divincenzo 35% E . 0%
J. Clark 4
1 Ingles
| McDaniels 4 1% 35% 1% &% ns -
| Randle
L. Garza -
M. Conley < 1% 1% & TH 15%.
N. Alexander\Walker 4 -10% O% B B% 2% 1% 1%
N. Reid % 0% 1% Y % 1% 16%
. iblingham - w -
R Gobert - L % 15% 1% 16% Lo
T. Shannon |r. -
) ) = 8 ' = z 5 o -} £ 3 =
: & F v [ o g L] E ] ] 3 =
H H o £ 5 H 3 H E < 3 3 2
s | = - 2 4 N G = E H ] E
w = ) 2 = 3 ) H & a
< =] = = 2 a 5
o ) 3 o ._-
=
=
% change in IPM (after vs before)
NA = pair missing (or filtered) in one period
A Holiday - % 0% [ %
A Sengun o 0% 0% o% 1%
A, Thampson = Ll 0% % o 11% o e % o
€. Whitmore o 0% o 18% o 0%
D. Brooks - L) % 0% % 12% % o
j. Green L) 1% 11% 1% % o % o
J Landale -
1. Smith Jr. 4
) Tate 4 (DY % o
N. Williams -
B, Sheppard - o o
5. Adams - 0% o 4%
T. Eason - 0% [ e

A Heliday

A. Sengun

A. Thompsan

€. Whitmuore

. Brooks

J. Green

J. Landsle

J. Smith |r.

1. Tate

N. Williams.

R, Sheppard

S, Adams

T. Easan

- =50

=75

=100

100

75

50

25

=25

-50

=75

—-100

% change

% change

1. Timberwolves

As the league's most uniform team,
the Timberwolves demonstrated
remarkable stability. The heatmap
shows that most IPM changes were
small and evenly dispersed across the
roster, typically within a +£10%
range. There were no terrible
collapses or dramatic improvements;
instead, the impact of the injury was
absorbed by the network with
minimal disruption. This muted
response shows a well-balanced
chemistry structure where the loss of
a single player does not destabilize
the entire system.

2. Rockets

The Rockets' provided an even
stronger confirmation of our
hypothesis. The heatmap is
predominantly white, indicating that
most IPM changes post-injury were
clustered around 0%. This pattern of
minimal disruption across the board
shows a really deeply uniform
chemistry structure. The mild and
evenly distributed changes show a
team whose performance is not
contingent on any single player,
allowing it to maintain its structural
integrity and performance level even
when facing adversity.



9. Difference in Means and Variance Test

To formally evaluate our hypothesis — that teams with spiky chemistry distributions
experience greater volatility in response to adversity — we conducted two standard statistical
tests: a Welch’s t-test to compare means and a Levene’s test to compare variances.

We began by calculating the mean change in IPM for all players following a midseason
injury to a high average IPM teammate, grouped by whether their team was classified as spiky or
uniform. Contrary to our initial expectations, the Welch’s t-test revealed no statistically
significant difference in average IPM change between the two team types. In other words, on
average, players in both spiky and uniform teams adjusted similarly in terms of performance
magnitude.

However, our theoretical model did not rest on mean outcomes, it rested on the idea that
spiky teams lack structural redundancy, and therefore would respond to disruption with greater
variability. To test this, we applied a Levene’s test for homogeneity of variance to the same two
groups. This time, the results were conclusive: the variance in IPM change was significantly
higher among spiky teams (c? = 21.3) than among uniform teams (c* = 6.9), with a p-value less
than 0.0001.

This result directly supports our hypothesis. While the average level of chemistry change
may be comparable across teams, the stability of those changes is not. Uniform teams responded
to adversity in a more predictable and consistent manner, while spiky teams saw disproportionate
fluctuations, some players improved dramatically, others collapsed. This reflects a lack of
structural balance: when chemistry is concentrated among a few dominant links, any disturbance
to those links sends unpredictable ripple effects across the network.

Our takeaway is that team resilience under pressure is not defined by how much
chemistry changes on average, but by how predictably it changes across players. This has critical
implications for roster construction, game planning, and trade decisions. Teams built on uniform
chemistry structures can absorb disruption and reallocate responsibility smoothly. Spiky teams,
by contrast, face a roll of the dice, sometimes rebalancing effectively, sometimes falling apart.

10. Conclusion and Drawbacks

This study set out to investigate whether the structure of a team’s chemistry network —
specifically, the distribution of effective player pairings — could explain how resilient a team is to
adversity in the form of a midseason injury. We hypothesized that teams with uniformly
distributed chemistry would show more consistent performance post-injury, while spiky teams,
those relying on a few elite connections, would exhibit more volatile adjustments.



Our findings support this hypothesis, but with an important nuance. A Welch’s t-test
found no significant difference in the average change in chemistry between the two groups.
However, the Levene’s test revealed a striking difference in variance: chemistry change was
significantly more volatile in spiky teams (6> = 21.3) than in uniform ones (6> = 6.9), with a
p-value < 0.0001. This suggests that team resilience is not about whether chemistry shifts, but
about how predictably it shifts. Uniform teams absorb disruption with stability; spiky teams react
chaotically, sometimes adapting well, sometimes collapsing.

The implication this may hold for team construction are:
- Playoff-caliber teams may benefit from targeting role players who strengthen redundant
chemistry links, thus enhancing resilience.
- Rebuilding teams, on the other hand, may intentionally embrace spikiness and volatility,
gambling on a single star’s transformative potential.

That said, there are important limitations to our approach:

Limitations of the Chemistry Metric (IPM):

IPM is built from box-score statistics shared during court time. While it captures many on-ball
outcomes, assists, points, rebounds, etc., it misses off-ball movement, leadership, rotations, and
communication. True chemistry encompasses more than shared stats gained during shared
playtime.

Interpretation of Betweenness Centrality:

In theory, betweenness should help identify players who glue teams together. But because our
edges are based on [PM, betweenness often highlights players with many minutes across
rotations, not necessarily the star-based structural connections we deemed important for analysis.

Scope of Data:

We focused on four representative teams. A broader sample would allow for more robust
regression models, particularly those that correlate IPM volatility with win-rate changes,
providing a stronger link between chemistry and outcomes people care about.

Simulated vs. Real-World Removal:

Our model assumes injuries are disruptive enough to simulate structural holes. In practice,
coaching adjustments, strength of schedule, and opponent quality also affect post-injury
outcomes—factors that we could not fully control for.

Despite these constraints, our work introduces a foundational framework for thinking about team
chemistry: not just as “who plays well together,” but as a networked system of redundancies.
Resilience lies not in any single connection, but in a structure that can adapt without breaking.
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